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Abstract. In this paper, we discuss how we use variances of gray level
spatial dependencies as textural features to retrieve images having some
section in them that is like the user input image. Gray level co-occurrence
matrices at five distances and four orientations are computed to measure
texture which is defined as being specified by the statistical distribution
of the spatial relationships of gray level properties. A likelihood ratio
classifier and a nearest neighbor classifier are used to assign two images
to the relevance class if they are similar and to the irrelevance class if they
are not. A protocol that involves translating a K×K frame throughout
every image to automatically construct groundtruth image pairs is pro-
posed and performance of the algorithm is evaluated accordingly. From
experiments on a database of 300 512× 512 grayscale images with 9,600
groundtruth image pairs, we were able to estimate a lower bound of 80%
correct classification rate of assigning sub-image pairs we were sure were
relevant, to the relevance class. We also argue that some of the assign-
ments which we counted as incorrect are not in fact incorrect.

1 Introduction

Large amount of images that are generated by various applications and the
advances in computation power, storage devices, scanning, networking, image
compression, desktop publishing, and the World Wide Web have made image
databases increasingly popular. The advances in these areas contribute to an
increase in the number, size, use, and availability of on-line image databases.
New tools are required to help users create, manage, and retrieve images from
these databases. The value of these systems can greatly increase if they can
provide the ability of searching directly on non-textual data, instead of searching
only on the associated textual information.
In a typical content-based image database retrieval application, the user has

an image he or she is interested in and wants to find similar images from the
entire database. The image retrieval scenario we address here begins with a query
expressed by an image. The user inputs an image or a section of an image and



desires to retrieve images from the database having some section in them that
is like the user input image.
In content-based retrieval, the problem is first to find efficient features for

image representation, then to use an effective measure to establish similarity
between two images. The features and the similarity measure should be efficient
enough to match similar images as well as being able to discriminate dissimilar
ones. In this paper, we discuss how we use variances of gray level spatial de-
pendencies as textural features to retrieve images from a database of grayscale
images. Then, we propose a protocol to automatically construct groundtruth im-
age pairs to evaluate the performance of the algorithm accordingly. Given these
groundtruths, we find the best case and worst case classification efficiencies of
the algorithm.
The paper is organized as follows. First, some of the previous approaches to

texture and its use in content-based retrieval are discussed in Section 2. Second,
we discuss our textural features in Section 3. Section 4 describes the decision
methods for similarity measurement. Next, we present our experiments and re-
sults in Section 5. Finally, we discuss the conclusions and suggestions for future
work in Section 6.

2 Background and Motivation

Texture has been one of the most important characteristics which have been used
to classify and recognize objects and scenes. Texture can be characterized by the
spatial distribution of gray levels in a neighborhood. Numerous methods, that
were designed for a particular application, have been proposed in the literature.
However, there seems to be no general method or a formal approach which is
useful in a broad range of images.
In his texture survey, Haralick [6] characterized texture as a concept of two

dimensions, the tonal primitive properties and the spatial relationships between
them. He pointed out that tone and texture are not independent concepts, but
in some images tone is the dominating one and in others texture dominates.
Then, he gave a review of two kinds of approaches to characterize and measure
texture: statistical approaches like autocorrelation functions, optical transforms,
digital transforms, textural edgeness, structuring elements, spatial gray level run
lengths and autoregressive models, and structural approaches that use the idea
that textures are made up of primitives appearing in a near regular repetitive
arrangement.
Rosenfeld and Troy [13] also defined texture as a repetitive arrangement of

a unit pattern over a given area and tried to measure coarseness of texture
using amount of edge per unit area, gray level dependencies, autocorrelation,
and number of relative extrema per unit area.
Many researchers used texture in finding similarities between images in a

database. In the QBIC Project, Niblack et al. [4] used features like color, tex-
ture and shape that are computed for each object in an image as well as for
each image. For texture, they extracted features based on coarseness, contrast,



and directionality. In the Photobook Project, Pentland et al. [12] used features
based on appearance, 2-D shape and textural properties. For texture, they used
2-D Wold-based decompositions. In the CANDID Project, Kelly et al. [9] used
Laws’ texture energy maps to extract textural features and introduced a global
signature based on a sum of weighted Gaussians to describe the texture. Man-
junath and Ma [11] used Gabor filter-based multiresolution representations to
extract texture information. They used means and standard deviations of Ga-
bor transform coefficients, computed at different scales and orientations, as fea-
tures. Li et al. [10] used 21 different spatial features like gray level differences
(mean, contrast, moments, directional derivatives, etc.), co-occurrence matrices,
moments, autocorrelation functions, fractals and Robert’s gradient on remote
sensing images. Carson et al. [2] developed a region-based query system called
“Blobworld” by first grouping pixels into regions based on color and texture us-
ing expectation-maximization and minimum description length principles, then
by describing these regions using color, texture, location and shape properties.
Texture features they used are anisotropy, orientation and contrast computed
for each region.

We define texture as being specified by the statistical distribution of the
spatial relationships of gray level properties. Julesz [8] was the first to conduct
experiments to determine the effects of high-order spatial dependencies on the
visual perception of synthetic textures. He showed that, although with few ex-
ceptions, textures with different first- and second-order probability distributions
can be easily discriminated but differences in the third- or higher-order statistics
are irrelevant.

One of the early approaches that use spatial relationships of gray levels in
texture discrimination is [5], where Haralick used features like the angular sec-
ond moment, angular second moment difference, angular second moment inverse
difference, and correlation, computed from the co-occurrence matrices for auto-
matic scene identification of remote sensing images and achieved 70% accuracy.

In [7], Haralick et al. again used features computed from co-occurrence ma-
trices to classify sandstone photomicrographs, panchromatic aerial photographs,
and ERTS multispectral satellite images. Although they used only some of the
features they defined and did not use the same classification algorithm in their
tests for different data sets, it can be concluded that features they compute
from co-occurrence matrices performed well in distinguishing between different
texture classes in many kinds of image data.

Weszka et al. [15] made a comparative study of four texture classification ap-
proaches; Fourier power spectrum, co-occurrence matrices, gray level difference
statistics, and gray level run length statistics, to classify aerial photographic
terrain samples and also LANDSAT images. They obtained results similar to
Haralick’s [7] and concluded that features computed from co-occurrence matri-
ces perform as well as or better than other algorithms.

Another comparative study is done by Conners and Harlow [3]. They used
Markov-generated images to evaluate the performances of different texture anal-
ysis algorithms for automatic texture discrimination and concluded that the



spatial gray level dependencies method performed better than the gray level run
length method, power spectrum method, and gray level difference method.

From the experiments on wide class of images, it can be concluded that spatial
gray level dependencies carry much of the texture information [6] and they are
more general and perform better than other methods [15, 3]. More information
on this topic will be given in Section 3.1.

3 Feature Extraction

Structural approaches have been one of the major research directions for tex-
ture analysis. They use the idea that texture is composed of primitives with
different properties appearing in particular arrangements. On the other hand,
statistical approaches try to model texture using statistical distributions either
in the spatial domain or in a transform domain. One way to combine these two
approaches is to define texture as being specified by the statistical distribution
of the properties of different textural primitives occurring at different spatial
relationships.

A pixel, with its gray level as its property, is the simplest primitive that
can be defined in a digital image. Consequently, distribution of pixel gray levels
can be described by first-order statistics like mean, standard variation, skewness
and kurtosis or second-order statistics like the probability of two pixels having
particular gray levels occurring at particular spatial relationships. This informa-
tion can be summarized in two-dimensional co-occurrence matrices computed
for different distances and orientations. Coarse textures are ones for which the
distribution changes slightly with distance, whereas for fine textures the distri-
bution changes rapidly with distance.

In the following sections we describe the co-occurrence matrices and the
features we compute from them.

3.1 Gray Level Co-Occurrence

Gray level co-occurrence can be specified in a matrix of relative frequencies
P (i, j; d, θ) with which two neighboring pixels separated by distance d at orien-
tation θ occur in the image, one with gray level i and the other with gray level j.
For example, for a 0◦ angular relationship, P (i, j; d, 0◦) averages the probability
of a left-right transition of gray level i to gray level j at a distance d.

In our derivations, we define the origin of the image as the upper-left corner
pixel. Let Lr = {0, 1, . . . , Nr − 1} and Lc = {0, 1, . . . , Nc − 1} be the spatial
domains of row and column dimensions, and G = {0, 1, . . . , Ng − 1} be the
domain of gray levels. The image I can be represented as a function which
assigns a gray level to each pixel in the domain of the image; I : Lr × Lc → G.
Then, for the orientations shown in Figure 1, co-occurrence matrices can be



defined as

P (i, j; d, 0◦) = #{((r, c), (r′, c′)) ∈ (Lr × Lc)× (Lr × Lc)|

r′ − r = 0, |c′ − c| = d, I(r, c) = i, I(r′, c′) = j}

P (i, j; d, 45◦) = #{((r, c), (r′, c′)) ∈ (Lr × Lc)× (Lr × Lc)|

(r′ − r = d, c′ − c = d) or (r′ − r = −d, c′ − c = −d),

I(r, c) = i, I(r′, c′) = j}

P (i, j; d, 90◦) = #{((r, c), (r′, c′)) ∈ (Lr × Lc)× (Lr × Lc)|

|r′ − r| = d, c′ − c = 0, I(r, c) = i, I(r′, c′) = j}

P (i, j; d, 135◦) = #{((r, c), (r′, c′)) ∈ (Lr × Lc)× (Lr × Lc)|

(r′ − r = d, c′ − c = −d) or (r′ − r = −d, c′ − c = d),

I(r, c) = i, I(r′, c′) = j}.

(1)
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Fig. 1. Spatial arrangements of pixels

Resulting matrices are symmetric. The distance metric used in Equation (1)
can be explicitly defined as

ρ((r, c), (r′, c′)) = max{|r − r′|, |c− c′|}.

We can normalize these matrices by dividing each entry in a matrix by the
number of neighboring pixels used in computing that matrix. Given distance d,
this number is 2Nr(Nc − d) for 0◦ orientation, 2(Nr − d)(Nc − d) for 45◦ and
135◦ orientations, and 2(Nr − d)Nc for 90

◦ orientation.

3.2 Textural Features

In order to use the information contained in the gray level co-occurrence matri-
ces, Haralick [7] defined 14 statistical measures which measure textural charac-
teristics like homogeneity, contrast, organized structure, complexity, and nature
of gray level transitions. Since from many distances and orientations we obtain
a very large number of values, computation of co-occurrence matrices and ex-
traction of textural features from them become infeasible for an image retrieval
application which requires fast computation of features. We decided to use only



the variance

v(d, θ) =

Ng−1∑

i=0

Ng−1∑

j=0

(i− j)2P (i, j; d, θ) (2)

which is a difference moment of P that measures the contrast in the image.
Rosenfeld and Troy [13] called this feature the moment of inertia. It will have
a large value for images which have a large amount of local spatial variation
in gray levels and a smaller value for images with spatially uniform gray level
distributions.
Here a problem arises as deciding on which distances to use to compute

the co-occurrence matrices. Researchers tried to develop methods to select the
co-occurrence matrices that reflect the greatest amount of texture information
from a set of candidate matrices obtained by using different spatial relationships.
Zucker and Terzopoulos [16] interpreted intensity pairs in an image as samples
obtained from a two-dimensional random process and defined a chi-square test to
determine whether their observed frequencies of occurrences appear to have been
drawn from a distribution where two intensities are independent of each other. In
[14], Tou and Chang used an eigenvector-based approach and Karhunen-Loeve
expansion to eliminate dependent features. Currently we are developing meth-
ods to select the distances that perform the best according to some statistical
measures. In this work we compute the variance feature for 1 to 5 pixel distances
and four orientations. This constitutes a 20-dimensional feature vector.
Note that angularly dependent features are not invariant to rotation. We can

argue whether we want rotation invariance in a content-based retrieval system
or not. One can say that a rotated image is not the same as the original im-
age anymore. For example, people standing up and people lying down can be
regarded as two different situations so these images can be perceived as quite
different. On the other hand, in a military target database we do not want to
miss a tank when it is in a different orientation in the image in our database than
the orientation in our query image. This dilemma is also present in object-based
queries. In this work, we will use the feature vector described above which is ro-
tation variant. We are in the process of modifying our feature vector to include
rotation invariance as discussed in [7] and are going to do experiments with the
new feature vector on the same database.
Since our goal is to find a section in the database which is relevant to the input

query, before retrieval, each image in the database is divided into overlapping
sub-images using the protocol which will be discussed in Section 4.1. We then
compute a 20-dimensional feature vector for each sub-image in the database.

4 Decision Methods

After computing the feature vectors for all images in the database, given a query,
we have to decide which images in the database are relevant to it, and we have to
retrieve the most relevant ones as the results of the query. In our experiments we
use two different types of decision methods; a likelihood ratio approach which is a



Gaussian classifier, and a nearest neighbor rule based approach. In the following
sections we discuss these two approaches.

4.1 Likelihood Ratio

In the likelihood ratio approach, we define two classes, namely the relevance
class A and the irrelevance class B. Given the feature vectors of a pair of images,
if these images are similar, they should be assigned to the relevance class, if not,
they should be assigned to the irrelevance class.
In the following two sections we describe first, how to determine the param-

eters of the two classes, and second, how to construct the likelihood ratio.

Determining the Parameters The protocol for constructing groundtruths to
determine the parameters of the likelihood ratio classifier involves making up
two different sets of sub-images for each image i, i = 1 . . . I, in the database. The
first set of sub-images begins in row 0 column 0 and partitions each image i into
Mi K×K sub-images. These sub-images are partitioned such that they overlap
by half the area. We ignore the partial sub-images on the last group of columns
and last group of rows which cannot make up the K×K sub-images. This set of
sub-images will be referred as the main database in the rest of the paper.
The second set of sub-images are shifted versions of the ones in the main

database. They begin in row K/4 and column K/4 and partition the image i into
Ni K×K sub-images. We again ignore the partial sub-images on the last group
of columns and last group of rows which cannot make K × K sub-images. This
second set of sub-images will be referred as the test database in the rest of the
paper.
To construct the groundtruth to determine the parameters, we record the

relationships of the shifted sub-images in the test database with the sub-images
in the main database that were computed from the same image. The feature
vector for each sub-image in the test database is strongly related to four feature
vectors in the main database in which the sub-image overlap is 9/16 of the sub-
image area. From these relationships, we establish a strongly related sub-images

set Rs(n) for each sub-image n where n = 1 . . .Ni.
We assume that, in an image, two sub-images that do not overlap are usually

not relevant. From this assumption, we randomly select four sub-images that
have no overlap with the sub-image n. These four sub-images form the other

sub-images set Ro(n).
These groundtruth sub-image pairs constitute the relevance class Ai,

Ai = {(n,m)|m ∈ Rs(n) , n = 1 . . .Ni},

and the irrelevance class Bi,

Bi = {(n,m)|m ∈ Ro(n) , n = 1 . . .Ni}

for each image i. Then, the overall relevance class becomes A = A1∪A2∪· · ·∪AI
and the overall irrelevance class becomes B = B1 ∪ B2 ∪ · · · ∪ BI.



An example for the overlapping concept is given in Figure 2 where the shaded
region shows the 9/16 overlapping. For K = 128, sub-images with upper-left
corners at (0,0), (0,64), (64,0), (64,64) and (192,256) are examples from the
main database. The sub-image with upper-left corner at (32,32) is a sub-image
in the test database. For this sub-image, Rs will consist of the sub-images at (0,0),
(0,64), (64,0), and (64,64), because they overlap by the required amount. On the
other hand, Ro will consist of four randomly selected sub-images, one being the
sub-image at (192,256) for example, which are not in Rs and have no overlap
with the test sub-image. The pairs formed by the test sub-image and the ones
in Rs and Ro form the groundtruths for the relevance and irrelevance classes
respectively. Note that for any sub-image which is not shifted by (K/4,K/4),
there is a sub-image which it overlaps by more than half the area. We will use
this property to evaluate the performance of the algorithm in Section 5.

sub-image
at (64,64)

sub-image
at (192,256)

sub-image
at (64,0)

sub-image
at (0,0)

test sub-image
at (32,32)

sub-image at (0,64)

c

r

Fig. 2. The shaded region shows the 9/16 overlapping between two sub-images

As the database structure is concerned, our first sub-image database (main

database) contains a unique sub-image i.d., bounding box, and the feature vector
for each sub-image m = 1 . . .Mi and i = 1 . . . I. The second sub-image database
(test database) contains a unique sub-image i.d., bounding box, Rs(n), Ro(n),
and the feature vector for each sub-image n = 1 . . .Ni and i = 1 . . . I.

In order to estimate the distribution of the relevance class, we first compute
the differences d, d = x(n)−y(m) , (n,m) ∈ A, x(n), y(m) ∈ R

Q where Q is 20 for
our features, and x(n) and y(m) are the feature vectors of sub-images n and m
respectively. Then, we compute the sample mean, µA, and the sample covariance,
ΣA, of these differences. We assume that these differences for the relevance class
have a normal distribution with mean µA, and covariance ΣA. Similarly, we
compute the differences d, d = x(n) − y(m) , (n,m) ∈ B, x(n), y(m) ∈ R

Q, then
the sample mean, µB, and the sample covariance, ΣB, for the irrelevance class.



Making the Decision Suppose for the moment that the user query is a K×K
image. First, its feature vector x is determined. Then, the search goes through
all the feature vectors y(m) in the main database where m = 1 . . . (

∑I
i=1Mi), Mi

being the number of sub-images in the i’th image. For each feature vector pair
(x, y(m)), the difference d = x− y(m) is computed.
The probability that the input query image with feature vector x, and a

sub-image in the database with feature vector y(m) are relevant is P (A|d) =
P (d|A)P (A)/P (d) and that they are irrelevant is P (B|d) = P (d|B)P (B)/P (d).
We can define the likelihood ratio as

r(d) =
P (A|d)

P (B|d)
. (3)

If this ratio is greater than 1, the sub-image m is considered to be relevant to
the input query image. If we assume two classes are equally likely, equation (3)
becomes

P (d|A)

P (d|B)
=

P (d|µA,ΣA)

P (d|µB,ΣB)

=

1
(2π)Q/2|ΣA|1/2 e

−(d−µA)
′Σ−1
A
(d−µA)/2

1
(2π)Q/2|ΣB|1/2 e

−(d−µB)′Σ
−1
B
(d−µB)/2

> 1.

(4)

After taking the natural logarithm of (4) we obtain

(d− µA)
′Σ−1

A (d− µA)/2 < (d− µB)
′Σ−1

B (d− µB)/2 + ln
|ΣB|

1/2

|ΣA|1/2
. (5)

To find the sub-images that are relevant to an input query image, likelihood
ratios for all sub-images in the database are computed as in (3) and the sub-
images are ranked by these likelihood ratios. Among them, k sub-images having
the highest r-values are retrieved as the most relevant ones.

4.2 Nearest Neighbor Rule

In the nearest neighbor approach we assume each sub-imagem in the database is
represented by its feature vector y(m) in the Q-dimensional feature space. Given
the feature vector x for the input query, we want to find the y’s which are the
closest neighbors of x by a distance measure. Then, the k-nearest neighbors of
x will be retrieved as the most relevant ones.
The problem of finding the k-nearest neighbors can be formulated as follows.

Given the set Y = {y(m)|y(m) ∈ R
Q,m = 1, . . . ,M} and feature vector x ∈ R

Q,
find the set of sub-images R ⊆ {1, . . . ,M} such that #R = k and

ρ(x, y(r)) ≤ ρ(x, y(p)) , ∀r ∈ R, p ∈ {1, . . . ,M}\R

where M =
∑I

i=1Mi, Mi being the number of sub-images in the i’th image.



For the distance metric ρ we use the Euclidean distance

ρ(x, y) = ‖x− y‖

or the infinity norm
ρ(x, y) = max

i=1,...,Q
|xi − yi|

where xi and yi are the i’th components of the corresponding feature vectors.

5 Experiments and Results

Testing content-based retrieval systems and comparing the performances of two
different algorithms is an open question. Two traditional measures for retrieval
performance are precision and recall. Precision is the percentage of retrieved
images that are relevant and recall is the percentage of relevant images that
are retrieved. Note that computation of these measures requires image-level
goundtruthing of the database. We created two databases of sub-images ac-
cording to the protocol in Section 4.1 but since these automatically generated
sub-image-level groundtruths are not the ones required for precision and recall,
we use modified versions of these measures to evaluate the performance of our
algorithm. After manually grouping a smaller set of images in our database, we
will evaluate the performance using precision and recall too.
In the following sections we describe the database population and two exper-

imental procedures for our decision methods.

5.1 Database Population

To populate the database, we used the Fort Hood Data, supplied for the RADIUS
program by the Digital Mapping Laboratory at Carnegie Mellon University.
These images consist of visible light images of the Fort Hood area at Texas. We
divided these aerial images into 300 512 × 512 images. After the database was
constructed, we carried out the approach described in Section 4.1 which involved
translating a 256× 256 frame throughout every image and extracted the desired
features for all sub-images.

5.2 Experimental Set-up

To test the classification effectiveness using the Gaussian classifier, we can apply
the classification algorithm to each groundtruth pair (n,m) described in Section
4.1. Since we know which non-shifted sub-images and shifted sub-images overlap,
we also know which sub-image pairs should be assigned to class A and which to
class B. So, to test our approach, we then check whether each pair that should
be classified into class A or B is classified into class A or B correctly.
To test the retrieval performance of the algorithm, we use the following pro-

cedure. Given an input query image of size K × K, we create a list of retrieved



images in descending order of likelihood ratio or ascending order of distance
for nearest neighbor rule. If the correct image is retrieved as one of the k best
matches, it is considered a success. This can also be stated as a nearest neigh-
bor classification problem where the relevance class is defined to be the best k
matches and the irrelevance class is the rest of the images. We also compute the
average rank of the correct image among retrieved images. For this experiment,
we use the non-shifted sub-images to compute the best case performance and
the shifted sub-images to compute the worst case performance. We call this the
worst case performance because the shifted sub-images overlap by approximately
half the area of a sub-image in the database. All other possible sub-images have
a sub-image in the database which they overlap by more than half the area. This
experimental procedure is appropriate to our problem of retrieving images which
have some section in them that is like the user input image.

5.3 Results

Classification Effectiveness In this experiment, the main database consists
of 2,700 256× 256 sub-images and the test database consists of 1,200 256× 256
sub-images. There are 4 relevant and 4 irrelevant non-shifted sub-images for each
of the 1,200 shifted sub-images, which make a total of 9,600 groundtruth sub-
image pairs. As can be seen in Table 1, 79.75% of the groundtruth A pairs were
assigned to A with an overall success of 62.96%.

Table 1. Confusion matrix for the classification effectiveness test.

Assigned Relevant Assigned Irrelevant Success (%)

Relevant Pair G.truth 3,828 972 79.75

Irrelevant Pair G.truth 2,584 2,216 46.17

Overall 6,412 3,188 62.56

We can say that most of the groundtruth A pairs were assigned to A but
the groundtruth B pairs seem to be split between being assigned to A or B.
The cause of this problem can be explained as follows. Although the assumption
that overlapping sub-images are relevant almost always holds, we can not always
guarantee that non-overlapping sub-images are irrelevant. Obvious examples are
images which have the same texture pattern at more than one location. Illustra-
tion of this fact can be found in [1] where we manually eliminated some images
with large regions of constant gray values from the Fort Hood Dataset and ob-
tained a 42% decrease in the false alarm rate. Hence, some of the assignments
which we count as incorrect are not in fact incorrect. Thus the approximate 80%
correct relevant pair rate is a lower bound.



Retrieval Performance Results for the retrieval performance experiments are
summarized in Table 2 as the number of tests, number of successes, and average
rank of the correct image. For the best case analysis 2,700 sub-image queries were
used. As explained before, these are the non-shifted sub-images in the database.
For the worst case analysis, 1,200 shifted sub-images in the test database are used.
To illustrate the bounds found in these experiments, the database was queried
with 500 randomly extracted 256× 256 sections from images in the database. In
all of these experiments a success means the correct image is retrieved as one of
the best 20 matches.

Table 2. Results for the retrieval performance test.

Original sub-images
(no of tests = 2,700)

Likelihood Euclidean Infinity
Ratio Distance Norm

# successes 2,536 2,683 2,684

% success 93.93 99.37 99.41

avg. rank 4.0430 2.0078 2.0138

Shifted sub-images
(no of tests = 1,200)

Likelihood Euclidean Infinity
Ratio Distance Norm

# successes 683 701 681

% success 56.92 58.42 56.75

avg. rank 6.1830 5.5706 5.5727

Random sub-images
(no of tests = 500)

Likelihood Euclidean Infinity
Ratio Distance Norm

# successes 326 330 325

% success 65.20 66.00 65.00

avg. rank 5.7301 4.2576 4.2523

As can be seen in Table 2, the algorithm successfully retrieved the correct
image as one of the 20 best matches 56 percent of the time at the worst case. Eu-
clidean distance performed slightly better than the infinity norm. Although the
worst case and random query results of both likelihood ratio and nearest neigh-
bor decision methods were almost equal, nearest neighbor method performed
slightly better in the best case analysis. Also the nearest neighbor rule retrieved
the correct image at a higher rank than the likelihood ratio which is 2 at the
best case and 5 at the worst case on the average.

Experimenting on sub-image size showed that smaller sub-images give better
results because co-occurrence features are measures of micro texture and texture
tends to be more homogeneous as sub-image size gets smaller.

Some example queries are given in Figures 3(a)-3(f). In all of these figures
the upper-left image is the 256 × 256 query image. First three rows show the
best 12 matches among the 512 × 512 images in the database. Last row shows
4 images that are found to be the most irrelevant to the query image. Our



system also displays the most irrelevant images to help the user understand
how the system decides what is relevant and what is not. By looking at these
irrelevant images and comparing them with the relevant ones, the user can refine
his query in a more effective way. In each retrieved image, matched 256 × 256
sub-images are marked with a white border. More examples can be found at
http://isl.ee.washington.edu/∼aksoy/research/database.shtml.

6 Conclusions

In this paper, we discussed a system that allows a user to input an image or a
section of an image and retrieves all images from a database having some section
in them that is like the user input image.

To achieve this goal, texture was defined as being specified by the statistical
distribution of the spatial relationships of gray level properties and variances
computed from two-dimensional gray level co-occurrence matrices at 1 to 5 pixel
distances and four orientations were used to extract this information.

A likelihood ratio classifier was defined to measure the relevancy of two im-
ages, one being the query image and one being a database image, so that image
pairs which had a high likelihood ratio were classified as relevant and the ones
which had a lower likelihood ratio were classified as irrelevant. Also k-nearest
neighbor rule was used to retrieve k images which have the closest feature vector
to the feature vector of the query image in the 20-dimensional feature space.

Testing content-based retrieval systems and comparing the performance of
two different algorithms is an open question. A protocol which involved translat-
ing a K×K frame throughout every image to automatically construct groundtruth
image pairs for the relevance and irrelevance classes was proposed and perfor-
mance of the algorithm was evaluated accordingly.

Experiments were done on a database of 300 images to check the effectiveness
of the features in representing images. Results of the classification effectiveness
tests showed that the algorithm assigned 79.75% of the sub-image pairs we were
sure were relevant, to the relevance class correctly when the database was parti-
tioned into 9,600 256× 256 sub-image pairs even with an offset of quarter of the
image size which was 64 pixels in the tests. Results of the retrieval performance
tests showed that all of the decision methods retrieved correct images success-
fully as one of the best 20 matches, which is less than 1 percent of the total, in
more than 93 percent of the 2,700 experiments for the best case analysis and in
more than 56 percent of the 1,200 experiments for the worst case analysis.

An interesting study will be to examine images that are successfully retrieved
with the nearest neighbor rule but missed with the likelihood ratio, and vice
versa. Although being a micro texture measure, our features showed significant
performance on a database of complex aerial images. We are currently adding
more features that will capture the texture information at higher scales [1]. This
will result in a more compact representation that is needed for large databases
containing different types of complex images.



(a) Query by a sub-image from the main database using Eu-
clidean distance.

(b) Query by a sub-image from the test database using Eu-
clidean distance.

Fig. 3. Example queries using different distance methods



(c) Query by a sub-image from the test database using Infinity
norm.

(d) Query by a sub-image from the main database using Like-
lihood ratio.

Fig. 3. Example queries using different distance methods (cont.)



(e) Query by a sub-image taken from another Ft.Hood set
using Infinity norm.

(f) Query by a sub-image from the main database using Like-
lihood ratio.

Fig. 3. Example queries using different distance methods (cont.)
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